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A Simple Method to Account for Edge Shape
in the Conductor Loss in Microstrip

Edward L. Barsotti, Edward F. Kuester, Member, IEEE, and John M. Dunn, Member, IEEE

Abstract —A new technigque has been developed to examine the effect
of strip edge shape on conductor loss in planar transmission lines using
a modified incremental inductance rule. Based on Lewin’s and
Vainshtein’s zero-thickness strip perturbation in loss calculations, this
method requires an expression for the infinitely thin strip inductance, as
well as prescribed integration stopping points for the different strip
shapes. Results are given comparing loss for different edge shapes in a
microstrip system, using both this new method and the Lewin/
Vainshtein technique. Finally, the differing results of some other pub-
lished analytical and numerical loss methods based on the surface
impedance boundary condition are compared.

I. INTRODUCTION

ECENTLY, Lewin [1] and Vainshtein [2] have indepen-

dently developed a perturbation method of calculating
the strip portion of the conductor loss of a nonzero-thickness
microstrip using integrations of the currents from the limit-
ing case of a quasi-TEM zero-thickness strip. The ground
plane loss contribution is typically small in a microstrip
environment, so the strip contribution forms the major part
of the total conductor loss. In any event, the ground plane
loss is more straightforward to compute, since no edges are
involved, and we will regard it as readily calculated. The
edge singularity in the loss integration is avoided in [1], [2] by
stopping the integration just short of the edge by an amount
determined by the local geometry near the nonzero-thickness
edge. Division of the zero-thickness current into the portions
on the top and bottom surfaces of the strip can be difficult in
planar lines, particularly in microstrip. This new method
allows comparison of the loss of planar transmission lines
with different edge shapes from only a knowledge of the
inductance of the corresponding structure with infinitely thin
strips and also the integration stopping points. The tech-
nique is applicable to microstrip as well as other planar lines.
Once accurate determination of the loss for a specific edge
shape has been made from other methods, losses for strips
with other edges can be found. The conductor loss in the
specific case of a rectangular-edged microstrip is examined
here in a survey of published analytical and numerical results
[3]-[7] based on the surface impedance boundary condition.
Finlay et al. [8] give results which are based on a modified
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surface impedance condition, including the effects of the
surface currents on both sides of the strip.

II. DerivaTION OF Loss DiIFrFreERENCE FORMULAS

A. Use of the Lewin/Vainshtein Current
Integration Technique

For a highly conductive, nonzero-thickness strip, the as-
sumption of a surface impedance boundary condition is often
taken. Using E,,=Z.a,X H,,, where Z, =1+ jIR,=
(1+ j)ymfup is the surface impedance and a,, the outward
unit normal vector, and neglecting loss due to the ground
plane, the loss integration can be reduced to the contour
integral [3]

ngsuf
a,=
2Zy7c|1)?

(1)

where «, is the attenuation constant in Np/m and C is the
boundary of the nonzero-thickness strip cross section as in
Fig. 1(a). Here Z, is the characteristic impedance of the
transmission line, J; is the z-directed surface current density
on the longitudinally invariant (8 /dz = () strip, and I is the
total current of the strip. According to Lewin and
Vainshtein, this contour integral can be replaced by a line
integral using an infinitely thin, perfectly conducting strip
with its correspondingly simpler longitudinal current distri-
bution J . Dividing this current into J ., and J_g,,, the
top and bottom surface currents of the strip, respectively, the
foss becomes

R, w/2— A,

== J2 + J2 dx (2
0(( 22012 —w/2+A,[ ~(].Iop(x) .(),bo!(x)] ( )

where A, and A, are the integration stopping points for the
left and right edges, respectively (see Fig. 1(b)), and w is the
strip width. Each stopping point, a very small distance from
the edge singularity, is a function only of the local edge
geometry, and is obtained by equating the loss in the zero-
thickness case to the actual loss due to local nonzero edge
effects under static approximations of the fields. The division
of the ideal current expression J., into top and bottom strip
currents J.g o, and J_g ., is dependent on the planar trans-
mission line configuration. As an example, the currents of
the microstrip line of Fig. 2 will be separated by a Green’s
function technique.
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Fig. 1. (a) Finite-thickness strip with a rectangular edge. (b) Zero-
thickness strip with integration stopping points A, and A, and Cartesian
coordinates (x, y).
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Fig. 2. Geometry of the microstrip used in the Lewin/Vainshtein
current integration method.

Assuming the geometry for the microstrip as in Fig. 2, the
Lorentz potential A can be expressed by the integral [9]

A(x,y) =M95C GJso(p')‘dl’- (3)

An appropriate Green’s function G for this microstrip con-
figuration is

V(x = x)2+(y+2h)?
Vi(x—x)2+y?

where the denominator of the logarithmic function is due 10
the strip, and the numerator is due to its image below the
ground plane. This is a purely transverse, quasi-static func-
tion. When this Green’s function is used and only the longi-
tudinal component of surface current, J,,, is considered, the
single Lorentz potential component A, is

n ' \/()c—x’)z—{-(y—l-Zh)2 ,
A (x,y)= E%w]z()(x )In m dl'.

(5)

The transverse variation of the magnetic field H of a
quasi-TEM mode in the quasi-static limit can be expressed in
terms of the Lorentz potential as [10]

1
G(p,#) =5 1n )

1
=—V,XA4 (6)
n

where the subscript T indicates transverse variation only, or
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d/dz=0. Using (6) with 4= A,a_, the magnetic field in
Cartesian coordinates is

1 94 1 64,
- a,— .
w dy Tu ox

z

H(x,y)=a, (7

This expression for the magnetic field can be used to find the
surface currents on both sides of the infinitely thin strip by
the boundary condition

Jo=a, % H|;.

(8)

Here a,, is the outward unit normal vector from the surface
S, which is the surface of the strip in Fig. 2. On the top of
the strip, a,=a,, y =07, and

az"z(),top(x)=ayxax[_Hx(xvy)|y=()+] (9)
SO

‘Iz()‘top(x)=wa(x’y)ly=()+' (10)

Thus only the x component of the magnetic field needs to be

considered. Likewise, on the bottom of the strip, a,=—@a,,
y=07,
az"z(),hot(x)=_ay><ax[Hx(x’y)|y=()‘] (11)
SO
"z()‘bot(x) ZHX(X,Y)|y=0-- (12)
Solving for H, from (5) and (7),
H(x,y)
1 \/(x—x')2+(y+2h):Z
-— —95 Jo(x")In dl'
dy | 27 c, Vix—x)+y?
1 2(y +2h)
2__¢ Jo(x") N2 2
4mJc, (x—x)+(y—2h)
2y
= dl". 13
(x—x')2+y2} (13)

Since J,o=J,0.0p + J0.01> the current on each side of the
strip can be subdivided as

1
'Iz(),lup(x) :EJ:()(X)—SJ:()(X) (14)
and
1
Jo b X) = EJ:()(«V)*‘BJ:()(X) (15)

where

i
8J.0(x) = E(J:l),hnl(x) - J:n,mp( x))

1
ZE[H\.(X,y)I\,:“ +H\(x,y)|\,;”,]_ (l())
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If (13) is rewritten as

1 , 2(—y+2h)
Hx(xr—y)=E¢%w‘]z()(x)[(x_x,)2+(_y_2h)2
2y
_(x_x')2+(—y)2:ldl, (17)
then the sum of (13) énd (17) is
H.(x,—y)+ HJ(x,y)
1 , 2(y+2h)
=§;95CWJZ()(X)[(x—x’)2+(y—2h)2
2(=y +2h) ,
(x—x’)2+(—y—2h)2}dl. (18)

In the limit y — 0%, half the sum (18) becomes §J,, from
(16), and since J,, is the total current of both sides of the
strip, the contour integral for 8/,, becomes the line integral

57 _ ﬁ w2 J(x')dx’
w0(x) = Wf—w/z(x — x)+4h?’

(19)

In terms of J,, and 8J,,, the integral (2) is then

R, wp-a 1 ]
= " =T2 +28J2(x) | dx
A 22012 —w/2+A,[2 fo(x) S0(x)

R

s w/2- A, 1 w/2
Y NE [f w/2+A‘2‘ zzo(x)deFf /223J‘.20(x)}dx.
0 - ; —w

(20)

The approximation is possible since 8/,, = 0 near the edges.

The integration (20) can now be done with an expression
for the total current J,(x) on an infinitely thin strip in a
microstrip system. A closed-form expression by Kobayashi
[11]is

T.o(x) _ _ 2x,\ M(x)-1
OB e o e S
where
M(x)= ! (22)

Vi-Qx/w)?

and x,., given by Kobayashi, is a function of the microstrip
geometry w /h. Using Kobayashi’s current profile, the inte-
gral (20) can be easily reduced to closed form except for the
term (19), which must be approximated numerically.

In the most general case of two similar strips having the
same widths but different edge shapes, the unperturbed
current distribution J_,(x) will be the same for both. How-
ever, owing to the different edge shapes, the losses are

Rs' w/2-A,
a,=— "IE en (X)) +IZ (X)) | dx (23
' 2z,1? —W/2+A,,[ 0.10p{ %) + L2 b )] (23)
Rs w/2—A,
= ¥ [y2 L2 Y
o, 27,17 _W/2+A3,[ 20.10p( X) z(),hot(x)] (24)

for the first and the second strip, respectively. Combining
(23) and (24), the difference in attenuation constants

becomes

R —w/2+ Ay,
X = e JZ +J2 dx
®ey — U 22012 (/_ w24 Ay [ z(),lop(x) z().bot(x)]

w/2~A,,
= [ T R aop() + T (X)) x| (25)

w/2— Ay,

This integral, using Kobayashi’s current profile, is the result
used to employ the Lewin/Vainshtein current integration
technique on the loss effect of different edge shapes.

B. Loss Difference Formula from a Current Model

The total current distribution J,, of the strip near the left
edge can be modeled as [11]

K1
Lolx) =—=+F(x))

N

as x; — 0, where K, is a constant, F(x,) is a function of x,
which is bounded as x; —» 0, and x, is the distance from the
left edge (see Fig. 1). Similarly, J,, near the right edge is
K, I
J:()(xr) =7+ Fr(xr)

75

as x, = 0, where K,, F,(x,), and x, are analogously defined.
Since the stopping points A are in general very near the tip,
J20,10p @0 J, 4 b Can each be approximated as 1/2J,, that
is, K,I/Z‘/;, or K,I/Z\/x—,. Since x;=x+w/2 and x, =
w /2~ x from the geometry of Fig. 1, (25) becomes

AL 2KAI? A, 2K2I?
. f \ ! dx,~f 2 er
A, 4x; A, 4x,

A A,

s 2 i 2 17
iz, [K, ln(A21)+Kr ln(Azr”. (28)
The constants K; and K,, the singularity terms in the
current models J,, = K,I/\/,—v_, and J,, = K,.I/\/Z, must be
determined. Of course, when J,, is integrated over the
entire strip, the result is the current I, but the K terms are
different for each geometry and configuration. In the follow-
ing, K will be related to the inductance of the zero-thickness
case, so that a modified incremental inductance rule will be
developed without thickness corrections. Eventually, the sep-
arate terms K, and K, will combine into the derivative of
inductance with respect to width, 4L /dw, so the subscripts

will be dropped for brevity.

(26)

(27)

C. Relating the Singular Part of the Current to the Expanded
Lorentz Potential

From (6), the quasi-static magnetic field can be expressed
as

1

H=—-V,x4 (29)
m
where the potential A satisfies
ViA.=0 (30)

in the cross-sectional region surrounding the strip as in Fig.
3(a). If A. is expanded in a sine series near the edge
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Fig. 3. (a) First case, with strip of width w and cylindrical geometry
(p,d) centered at the left edge. (b) Perturbed case having strip width
w+ &w and a new cylindrical geometry (r,0) centered at the new left
edge.

x=-w/2(p=0in Fig. 3(a)), the potential becomes

Az(p’¢)=Az()+ i Azm(p)Sin(m_z(i)_) (31)

m=1

where A, is the arbitrary constant value of the potential on
the strip (at angles of ¢ =0 and 27). In this two-dimen-
sional, source-free environment around the edge, the scalar
Laplace equation (30) becomes, upon substituting (31),

o (5]

149
——pT— - A,.(p)=0 32
PPl :m(P) (32)

which is solved by
Azm(p) = Cmpm/2 (33)

where C,, is an amplitude constant. The other solution
p~™/2 is disallowed owing to the Meixner edge condition of
finite field energy in any finite volume. From (33), (31)
becomes

Az(p7¢)=Az()+ Z Cmpm/ZSin(%(E)' (34)
m=1

The transverse magnetic field components H,, and H, are

found from (6), using only A4,. In terms of the expanded
potential 4.,

194, 1 m

d mdo
Hyp,p)=———=-— 3, —C, '"/2“sin(——)
4)(/7 ®) w op Pl ) p 5
(35)
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and
194, 1 i
pp 9 w7y 2

m

Hy(p,$)= Cmp’"/z“COS(m—d))-

2
(36)
From the magnetic field, the surface current on both sides
of the infinitely thin strip can be found from the boundary

condition (8). On the top surface, the cutward unit normal
vector a, =a,=a,, a,=a,, and ¢ =0, so

Jz(),top(p) =ay ><(I-I,oa,\r + H¢uay)|¢=()

1 =2 m
= — asz|¢=0= - Z ?Cmpm/zﬁlaz. (37)
Hom=1
On the bottom surface, a,=—a,=—-a,, a,=a,, and ¢ =

21, SO

Jz(),bot(p) =—a, X (Hpax + thay)ld,:z,,. =asz‘¢:27T

1 2 m
=— Y —C,p"* Tcos(mm)a,. (38)
=1 2
Thus, the total surface current is
1 2 m
Lop)=—— ¥ =C,p""*"'(1-cos(mm))
Moo= 2
C 3C
= -z Ty (39)
® ®

Since on the strip surface p = x,, (39) can be compared with
the current expression from (26) to find that

Kl=—-—

I

where the [ subscripts have been omitted from K and C,. A

similar derivation using the Lorentz potential expansion
about the right edge yields

(40)

Crl
K. l=—, (41)
13
The relation (40) will be compared with another derivation
based on inductances in order to eliminate C, and determine
K in terms of an incremental inductance.

D. Relating the Singular Part of the Current with the
Inductance Derivative

Fig. 3 illustrates two cases of an infinitely thin strip sur-
rounded by a perfectly conducting surface, both invariant in
the z direction. The first case has associated with it the
Lorentz potential A, the magnetic field H, the width w,
and a cylindrical geometry (p, @) with origin at the left strip
edge. The second, perturbed, case has an extra length éw to
the left of the first edge, so its width is w+ éw. It has a
different cylindrical geometry (r,8) centered at the new left
edge, as well as quantities A_.; and H;. In the first, the
Lorentz potential expansion near the edge is (34), and in the
perturbed case, it is

ot mo
A(r0)=A s+ L C,nﬁr’”/zsin(—i—)‘ (42)

m=1

The first term, A.;, the arbitrary constant potential of the
strip, is set equal to A, the potential of the first strip. The
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outer perfect conductors in each case are assigned potentials

of A, ~ 0. Starting with the integral
[ B-HdS (43)
s

where § is the enclosed area in Fig. 3(a) excluding the strip,
and using the definition

B; =V, X A, (44)
along with the vector identity
(V,XC) D=V (CxD)Y+C(V;:xD) (45)

the integral becomes

/SBB~HdS=[S(VT><Aa)-HdS

=fS[VT~(A5 X H)+ Ay (Vyx H)] dS. (46)

The region § has no sources, so VX H =0 can be used to
simplify the integral. Also, the divergence theorem

fS(VT-FT)dS=¢CFT-a,,d1

where a, is the outward unit normal vector, is applied. In
this case, the transverse vector F is (45X H) =(A,y5a, X
H). Thus,

(47)

fSBs-HdSzgsc(Ang)-andl

=¢ (Az()ﬁazx H)'an dl (48)
C,+C,

where C, is the outer conductor on which 4, =0 and C,, is
the closed loop around the strip in Fig. 3(a). From the

identity
A-(BXC)=C-(AXB) (49)

and defining a; as the unit vector tangential to the strip
contour C,, such that a, X a, = a,, the integral (48) reduces
to

=¢ H-(a,x A,a,)dl =¢ H-(Agsa;)dl
C. Cu

=¢C A,gsH dl = A,451 (50)

since the contour integral

(51)

is defined as the conductor current /. From the definition of
inductance, the strip potential 4,, can be expressed as
A,o= LI Similarly, A,,;= L;I;. Since the potential of the
strips in both cases were set equal,

gSH-dl=1

fB(s-Ha'S = A5l = LslsI= A, ]=LI%  (52)

s

Now, if the permeability w is linear throughout,
fB,s-HdS=/B-H5dS (53)
S s

is true, and from a derivation similar to (43)—(50) before,

j;B-HSdS=95C A,(p,d)Hydl.

wdw

(54)

Previously, the magnetic field of the first case, H, was
integrated over the first width w. Now, Hj is being inte-
grated over the perturbed width w + dw. The difference will
arise because A,; was constant, A4,,;, over a larger region
w + 8w than what the previous integration was carried over,
specifically w. In the present integral, 4, is constant, 4,
over width w only and has the behavior given by the expan-
sion in (34) beyond that. If A, is approximated by

AL ) = Ay Cifp sin (5 (55)

in the region 0 <r <6w, 6 =0, which is also dwx=p=0,
¢ =, and it is the constant A4, over the remainder of the
strip, then

Sé Az(P,¢)Ha'dl=¢ AoHy-dl

w+3u Cw +3w

8 ¢
+2[ Wl:Cl‘/;sin(—-)][H5'dp]. (56)

0 2
Here the factor of 2 arises from integration of the top and
bottom of the extra length of strip éw. Recognizing the

right-hand side contour integral as the current /; and substi-
tuting from (36) an approximation for H,s,
Cis 0

H (r,0)=—pr V2c0s| = 57

the expression becomes

w ¢
95 Az(p,¢)H5.dleZ(,15+2foﬁ [Cl\/—p_sin(z)}

w+Sw
-C 9
'[_ZLI_Sr_I/ZCOS (5)] dp. (58)

In the region of integration, ¢ =7, 6 =0, and r = dw — p, SO

swCC p
=dl+2[ 52 dp
0 2;.(, ow — p
C\Cis5(mdw
=A,ols - (T) (59)
CICISW‘SW
=Llly— —. (60)
2u
Equating the integrals (52) and (60) by (53),
C,C,,mdw
Ll -2 — | LI (61)
m
and rearranging, the result is
- C]C187T§W
Hy(Ls—L)=——7———. (62)
2p

Taking the limiting case éw—0, I;—>1I, C;—C,, and
(Ls—L)/éw—dL /dw, the constant C, in terms of the
inductance derivative is then

—2ul?—
2___£ﬂ

m

(63)
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TABLE 1
PERCENT DIFFERENCE IN FOUR DIFFERENT METHODS FOR TOTAL CONDUCTOR LOSSES
IN MicrosTRIP (INCLUDING GROUND PLANE) FROM THE PUCEL FORMULAS

(h=0254mm, t =18.19 um, ¢, =1, o = 49X 10”7 mho/m, f =1 GHz)

Loss Calculation Method

Width

(mm) Schneider Kaden Spielman Wiesbeck
0.1 22.0 —29.5 -0.9 14.3
0.2 10.9 —-20.0 -33 9.0
0.2540 9.1 -16.9 -3.0 11.5
0.2541 18.2 -16.9 -3.0 11.5
0.3 10.5 —14.9 —-2.5 8.9
0.4 7.7 -9.1 1.6 11.2
0.5 15.2 -0.5 9.5 18.7
0.5080 16.2 0.4 10.6 19.6
0.5081 4.0 —-10.2 1.0 7.0
0.6 3.8 -99 —-1.6 6.3
0.8 39 -9.1 -13 4.2
1.0 33 ~84 -12 2.3
1.2 2.5 -7.7 -05 14
1.4 1.7 -7.2 -0.1 04
1.6 1.2 —6.6 0.1 0.2
1.8 0.9 -6.0 0.3 0.3

Using (40) in (63), it is found that

oL
B B
w

7%y
which is the desired expression of K in terms of an incre-
mental inductance. When the right edge is incremented in a

similar derivation, then, using (41), the identical result (64) is
obtained. Therefore,

K?*= (64)

oL
_2__.
w

7%

KZ=KX=K*= (65)

Substituting back into (29), the final result for two general
strips is

oL

R_

fow Ay A,
=y — = [ 2 4 (66
e ™ e ZM#Z()[H(AN) n(Azr)] (66)

This amounts to a kind of incremental inductance rule
analogous to Wheeler’s [12] for the change in «, caused by
edge shape.

III. NuMmERIcAL RESULTS

A. A Survey of Microstrip Conductor Loss Methods Based on
the Surface Impedance Condition

In formula (66), the attenuation factor a,, is necessary as
a standard, and must be accurately determined if «,, the
attenuation for a strip with other edges, is to be meaningful.
Various methods may be used to find @, such as numerical
computation, accurate experiment, or analytical approxima-
tions. A comparison of those methods based on the surface
impedance boundary condition is done here for a rectangu-
lar-edged microstrip. Among those are the Lewin /Vainshtein
current integration method of subsection lI-A, using the
integration stopping point of A, =?/290.8; approximate
analytical loss formulas of Pucel [3], Schneider [4], and
Kaden [5]; and numerical results given by Spielman [6] and
Wiesbeck [7]. Pucel’s commonly accepted results are based

on Wheeler’s incremental inductance rule {12], which is
derived from the surface impedance condition, and on ap-
proximate closed-form expressions for the inductance of
nonzero-thickness, rectangular-edged microstrips. The for-
mulas in Pucel’s paper include ground plane loss but can be
altered to consider only the strip conductor. The method of
Schneider [4] is similar to Pucel’s in that it also is based on
Wheeler’s rule, and the ground plane loss contribution can
be extracted. However, Schneider’s formulas use different
closed-formed results, in this case approximations for the
microstrip characteristic impedance. Kaden [5] uses the con-
formal transformation technique on thin microstrips and
derives loss formulas for both ground plane and strip from
approximations of the resulting hyperelliptic integrals. A
program for moment method solution of a general microstrip
configuration with ground plane loss is given in Spielman [6]
(errors exist in the program listing in [6], and were corrected
by H. G. Oltman of Tecom Industries in a private communi-
cation). Another numerical method by Wiesbeck [7] imple-
menting the moment method is used to give results with and
without ground plane loss for three specific microstrip sub-
strate heights. The results given by Finlay et al. [8] are
particularly important for the case of metallization strips
with thicknesses comparable to skin depth.

All of the other techniques were compared for one of the
specific microstrip configurations used by Wiesbeck. Compu-
tation with these methods was done over a range of strip
widths from 0.1 <w < 1.8 mm, while all other parameters
were held constant at 4 =0.254 mm, t =18.19, um, €, =1,
o =49x10"7 mho/m, and f=1 GHz. Results of the total
conductor loss including the ground plane are given in Table
1 for the methods of Pucel, Schneider, Kaden, Spielman, and
Wiesbeck. Table II compares strip loss only for Pucel,
Schneider, Kaden, Wiesbeck, and Lewin/Vainshtein. All
entries are given in the form of a percentage difference from
Pucel, p:

A other — X Puce
¢ ,other ‘IULIXIOO.

p= (67)

& pucel

Several observations can be made from the results. First,
as the width gets narrower to 0.1 mm, the thin-strip approxi-
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TABLE 11
PERCENT DIFFERENCE IN FOUR DiFFERENT METHODS FOR STRIP CONDUCTOR LOss
IN MicrosTRIP FROM THE PuceL Formuras (A= 0.254 mm, t = 18.19 um,
€, =1,0=49%x10"" mho/m. f = | GHz)

Loss Calculation Method

Width
(mm) Schneider Kaden Lewin Wiesbeck
0.1 23.7 —41.5 29.4 20.4
0.2 12.0 -32.7 19.3 19.3
0.2540 10.2 -29.7 17.5 23.6
0.2541 19.3 -29.7 17.7 23.7
0.3 11.5 —275 15.6 22.0
0.4 8.5 -22.0 15.0 26.4
0.5 16.1 -13.9 20.6 36.7
0.5080 17.0 —-13.2 21.6 37.7
0.5081 4.6 —-22.4 8.6 23.1
0.6 4.5 -21.4 3.7 23.4
0.8 4.3 —-19.8 —2.4 21.9
1.0 3.6 —-18.3 —4.7 20.1
1.2 2.8 -17.0 —-6.0 19.1
1.4 2.0 -15.8 ~7.2 17.4
1.6 1.4 —14.6 —8.2 16.6
1.8 1.0 -13.7 -8.6 15.6
mation upon which each of the analytical formulas is founded -
starts to fail. This results in larger differences from Pucel, ‘
one of those analytical methods, at that width. Second, there
is a sharp discontinuity in Pucel’s loss at w/h =2, or w=
0.508 mm. This is where the two closed-formed inductance (a)
approximations used by Pucel meet, resulting in a discontinu-
ity of 9.0% for t — 0 and slightly worse for the nonzero
thickness here. Judging from the comparisons, it appears
that the w/h <2 approximation is at fault, giving losses !
which are too low. A similar discontinuity appears for
Schneider at the junction of two closed-form approximations (b)
of characteristic impedance, w /4 =1 or w = 0.254 mm. The ) . . .
Fig. 4. (a) Rectangular-edged strip. (b) Circular-edged strip.

third analytical result, by Kaden, appears to be consistently
lower than other results, but improves as the strip width
increases. Spielman’s numerical code shows excellent agree-
ment with Pucel, but the issue of discretization error should
be mentioned. In this application, the finite substrate and
ground plane width was assigned a value of /=10w. When
this ratio was changed, conductor loss was altered signifi-
cantly, especially for very large [ /w ratios. Thus, discretiza-
tion in numerical methods can drastically alter results.
Wiesbeck also compared reasonably with Pucel in foral loss,
particularly for wider strips, but the contribution of strip loss
varied much differently with substrate height /4 than Pucel.
Finally, the Lewin/Vainshtein current integration method
predicted higher strip loss than Pucel for narrow strips and
lower strip loss for wider strips. For the following numerical
comparisons, the attenuation from the Lewin/Vainshtein
method, @. 1w vamdian. Will be used as «,. keeping in
mind that the ground plane loss contribution becomes more
important with increasing strip width.

B. Results from the Modified Incremental Inductance Method

Formula (66) has been applied to microstrip lines of vary-
ing geometries comparing losses from the rectangular and
semicircular edges (see Fig. 4), using the conductor loss «,
of the rectangular-edged-strip above. The microstrip induc-
tance for an infinitely thin strip was taken from [3], with the
thickness correction terms set equal to zero. Finally, the
stopping points for the two edges, A, =1,/290.8 and A

rect circe

=1 /124.77, were taken from Lewin [1] and Vainshtein [2].

An approximate expression for the inductance of the mi-
crostrip is ([3])

AT
2 w 32\4h
for w/h <2 and
po (w1 w -
for w/h > 2. The required derivative dL /dw is found to be
aL mo [ A w
ﬁ=_2wh[;_ﬁ] (70)
for w/h <2 and
1
o ow  CTU7nIs
aw  2mh (w2 W 7 (71
(;+;In[2#e(—2—h—+0.94)])

for w/h>2.

In Fig. 5 the results of the loss comparison over a large
range of strip widths and thicknesses are given. It is seen that
the circular-edged microstrip produces appreciably smaller
loss than the rectangular-edged lines, especially as the strip
gets narrower. As expected, edge shape becomes unimpor-
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Fig. 5. Percent difference in loss between circular and rectangular
edges over a wide range of microstrip widths and thicknesses using the
modified incremental inductance method.

tant for very wide strips, since less of the total current is
concentrated in the edges of the strip. Again, in that ex-
treme, ground plane loss grows significantly and can no
longer be ignored. Another observation is that as the strip
grows thicker, the dependence on edge shape’ increases as
well.

C. Results from the Lewin/Vainshtein Method

The effect of circular edges on loss was examined accord-
ing to the modified incremental inductance method in Fig. 5.
To compare the results from this method with the
Lewin/Vainshtein current integration results, the current
integrations were carried out to both the circular and rectan-
gular stopping points, A, and A ., and compared. Results
for a single normalized thickness, ¢ /h = 0.01, are shown in
Fig. 6, along with the results from (66) in Fig. 5 for the same
thickness. An analysis of the results indicates that the two
contrasting methods have roughly the same edge shape de-
pendence over a wide range of strip widths.

IV. ConcLusioN AND FUTURE DIRECTIONS

The development of the result (66) was done to further
the work of Lewin [1] and Vainshtein [2] with specific em-
phasis on the effect of different strip edge shapes on the
conductor loss of planar transmission lines. A modified in-
cremental inductance method can be used to compare loss
for strips with different edges. Thus, once a result is ob-
tained for a specific edge by other methods, as surveyed
above, loss can be found for any strip edge shape if the
stopping point A and the zero-thickness system inductance
are known. This method holds for any planar line where
quasi-TEM approximations can be used, so that the induc-
tance is still a sensible quantity and the strip transverse
current can be ignored. In an asymmetric system such as
microstrip, the loss integration becomes complicated by the
division of an ideal, zero-thickness current expression into
the currents on the top and bottom of the strip. This method
avoids that problem, although those loss integrations were
developed and done here for comparison.

It has been shown that the effect of edge shape can be
appreciable and should be considered. Future work might
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Fig. 6. Percent difference in loss between circular and rectangular
edges over a wide range of microstrip widths and ¢ /4 = 0.01 using both
(a) the perturbational loss integrals of Lewin and Vainshtein and (b) the
modified incremental inductance method.

include a more extensive list of edge shape stopping points
A, especially for the trapezoidal edge, a common conse-
quence of the fabrication process. An experimental verifica-
tion with feasible edge shapes would be possible, especially
with the trapezoidal and rectangular edges. Finally, the sur-
face impedance boundary condition, used here and in many
analyses on conductor loss, should be thoroughly examined
for validity near the edge, where much of the conductor loss
takes place.
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