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A Simple Method to Account for Edge Shape
in the Conductor Loss in Microstrip

Edward L. Barsotti, Edward F. Kuester, Member, IEEE, and John M, Dunn, Member, IEEE

Abstract—A new technique has been developed to examine the effect
of strip edge shape on conductor loss in planar transmission lines using

a modified incremental inductance rule. Based on Lewin’s and
Vainshtein’s zero-thickness strip perturbation in 10SS calculations, this
method requires an expression for the infinitely thin strip inductance, as

well as prescribed integration stopping points for tbe different strip
shapes. Results are given comparing loss for different edge shapes in a
microstrip system, using both this new method and the Lewin/
Vainshtein technique. Finally, the differing resrdts of some other pub.

lished analytical and numerical loss methods based on the surface

impedance boundary condition are compared.

I. INTRODUCTION

R ECENTLY, Lewin [1] and Vainshtein [2] have indepen-
dently developed a perturbation method of calculating

the strip portion of the conductor loss of a nonzero-thickness
microstrip using integrations of the currents from the limit-
ing case of a quasi-TEM zero-thickness strip. The ground
plane loss contribution is typically small in a microstrip
environment, so the strip contribution forms the major part
of the total conductor loss. In any event, the ground plane
loss is more straightforward to compute, since no edges are
involved, and we will regard it as readily calculated. The
edge singularity in the loss integration is avoided in [1], [2] by
stopping the integration just short of the edge by an amount
determined by the local geometry near the nonzero-thickness
edge. Division of the zero-thickness current into the portions
on the top and bottom surfaces of the strip can be difficult in
planar lines, particularly in microstrip. This new method
allows comparison of the loss of planar transmission lines
with different edge shapes from only a knowledge of the
inductance of the corresponding structure with infinitely thin
strips and also the integration stopping points. The tech-
nique is applicable to microstrip as well as other planar lines.
Once accurate determination of the loss for a specific edge
shape has been made from other methods, losses for strips
with other edges can be found, The conductor loss in the
specific case of a rectangular. edged microstrip is examined
here in a survey of published analytical and numerical results
[3]-[7] based on the surface impedance boundary condition.
Finlay et al. [8] give results which are based on a modified
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surface impedance condition, including the effects of the
surface currents on both sides of the strip.

II. DERIVATION OF Loss DImmmcE FORMULAS

A. Use of the Lewin/Vainshtein Current
Integration Technique

For a highly conductive, nonzero-thickness strip, the as-
sumption of a surface impedance boundary condition is often
taken. Using Etdfl = Z,Un X Htan, where Z,= (1 + j)R$ =

(1+ ~)~~ is the surface impedance and a. the outward
unit normal vector, and neglecting loss due to the ground
plane, the loss integration can be reduced to the contour
integral [3]

_ IJ,12R,

$
— dl

“= 2Z() c Ill’
(1)

where a, is the attenuation constant in Np/m and C is the
boundary of the nonzero-thickness strip cross section as in
Fig. l(a). Here Z~l is the characteristic impedance of the
transmission line, J, is the z-directed surface current density
on the longitudinally invariant (d/dz = O) strip, and 1 is the

total current of the strip. According to Lewin and
Vainshtein, this contour integral can be replaced by a line
integral using an infinitely thin, perfectly conducting strip
with its correspondingly simpler longitudinal current distri-
bution J,(J. Dividing this current into JZIJ,.tOpand J:[l, b,,t, the

top and bottom surface currents of the strip, respectively, the
10SSbecomes

R,,

J

w/2– A,

‘c= ZZ,,Z2 –w/2+4 [J:,,,(,D(X)+ J:,,bot(x)] al (2)

where Al and A, are the integration stopping points for the
left and right edges, respectively (see Fig. l(b)), and w is the

strip width. Each stopping point, a very small distance from
the edge singularity, is a function only of the local edge
geometry, and is obtained by equating the loss in the zero-
thickness case to the actual loss due to local nonzero edge
effects under static approximations of the fields. The division
of the ideal current expression J,,J into top and bottom strip

currents ‘:(),t(lp and ~:(),$hot’s dependent on the planar trans-
mission line configuration. As an example, the currents of
the microstrip line of Fig. 2 will be separated by a Green’s
function technique.
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Fig. 1. (a) Finite-thickness strip with a rectangular edge. (b) Zero-
thicknessstrip with integration stopping points A, and A, and Cartesian
coordinates (x, y).
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Fig. 2. Geometry of the microstrip used in the Lewin/Vainshtein
current integration method.

Assuming the geometry for the microstrip as in Fig. 2, the
Lorentz potential A can be expressed by the integral [9]

~(x, Y) = w+= ,G&J(P’) all’. (3)
.

An appropriate Green’s function G for this microstrip con-
figuration is

G(p, p’)=~ht

14

(x-x’) 2+(y+2h)2

~~ 1(4)

where the denominator of the logarithmic function is due to

the strip, and the numerator is due to its image below the
ground plane. This is a purely transverse, quasi-static func-
tion. When this Green’s function is used and only the longi-

tudinal component of surface current, J,tJ, is considered, the
single Lorentz potential component A, is

r 1(x-x’) 2+(y+2h)2 ~1,
A,(x, y) = &jc .lz[J(x’)ln

w ~~ “—
(5)

The transverse variation of the magnetic field H of a
quasi-TEM mode in the quasi-static limit can be expressed in
terms of the Lorentz potential as [10]

1
H= —VTXA (6)

P

where the subscript T indicates transverse variation only, or

d/dz = O. Using (6) with ,4 = A ,az, the magnetic field in

Cartesian coordinates is

1 dAz 1 dAz
H(x, y)=a. – —–aY— — (7)

p Oy P(?X”

This expression for the magnetic field can be used to find the
surface currents on both sides of the infinitely thin strip by
the boundary condition

J,~J=a. X HIs. (8)

Here an is the outward unit normal vector from the surface
S, which is the surface of the strip in Fig. 2. On the top of
the strip, an = aY, y = 0+, and

az.Jzc~,top( .$)= a, x ‘X [- HX(%Y)I,=(,+] (9)

so

,[),top(x) = – ~x(~>Y)ly=()+.J (lo)

Thus only the x component of the magnetic field needs to be
considered. Likewise, on the bottom of the strip, an = —ay,
y= o-,

azJz(Lbot(x) = - ‘y x ax[~x(xy)ly==()-] (11)

so

‘d),hot(x) ‘~x(x, Y)[yr=()-. (12)

Solving for Hx from (5) and (7),

Hx(x, y)

‘+~:2(’(x’)1nlJ(x
2(y +2h)

—— :$j Jzo(x’)[(x_x/)2 +(y-2h)2
.,

2y

1’1’.
- (X-x’)’+yz

(13)

Since J=()= JZ(),t,,P+ J20,b,,i~ the current on each side of the
strip can be subdivided as

J mmp(~) = :J,(J(x) - c$JA, (x) ( 14)

and

1
‘:l)b,)~ (x) = ~ .()J. (X)+8 J:,J(X) (15)

where

1
~Jso(X) = #mW – J.ll.top(~))

=;[W,Y)I. =,, +W!Y)L)*]. (If>)
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If (13) is rewritten as

Hx(x, – y) S&$c:zo(x’)
[

2(–y+21Z)

. (x-x’) 2+(-y -2h)2

–2y
—

(x-x’) ’+(-y)’ 1dl’ (17)

then the sum of (13) and (17) is

Hx(x, –y)+Hx(x, y)

2(Y +2h)
-&4 J20(~’)[(x-x))’+ (y-2h)”—

w

2(-y+2h)

+ (x-x’) 2+(-y -2h)2 1all’. (18)

In the limit y -+ O‘, half the sum (18) becomes ~1~{~ from

(16), and since .lz(J is the total current of both sides of the
strip, the contour integral for 13J:1)becomes the line integral

In terms of .lz{~and i5JZ(J,the integral (2) is then

R,

J

w/2– A,
a’c=—

[ 1
L:,(X) +28 J:)(X) dx

2Z{#2 –w/’+A, 2

R,

[/

w/2– A,
= ‘J:](x)

2Zt)12 -w/’+&2 1(ix+J::,22N;)( x) &.

(20)

The approximation is possible since ~.lzf~= O near the edges.
The integration (20) can now be done with an expression

for the total current Jz{)(x) on an infinitely thin strip in a
microstrip system. A closed-form expression by Kobayashi
[11] is

J,t,(x) 2x,

()

M(x)–1
—=1+10 l–—
JZ,,(0) M(xC)–l

(21)
w

where

‘(x)=& (22)

and XC, given by Kobayashi, is a function of the microstrip
geometry w\ h. Using Kobayashi’s current profile, the inte-
gral (20) can be easily reduced to closed form except for the
term (19), which must be approximated numerically.

In the most general case of two similar strips having the
same widths but different edge shapes, the unperturbed
current distribution .fZtJ(x) will be the same for both. How-
ever, owing to the different edge shapes, the losses are

R,y
— ‘/2-A” [J;,,,,,P(X)+ J:,,.,,,(X)] ~ (23)

J“] = 2.Z,)12 -WI’2+AI,

R,

/

w/2— AZ,
~’2. —.—.———

2.Z(,12 -w/’+ A,, [J3),[OP(X) + kh[)t(x)] A (24)

for the first and the second strip, respectively. Combining
(23) and (24), the difference in attenuation constants

becomes

—J ,)~;:::’[JZ&(X)+%,.,(+ ~ . (25)

This integral, using Kobayashi’s current profile, is the result
used to employ the Lewin\Vainshtein current integration
technique on the loss effect of different edge shapes.

B. Loss Difference Formula from-a Current Model

The total current distribution JZCJof the strip near the left
edge can be modeled as [11]

(26)

as x, + O, where K, is a constant, Fl(x[) is a function of xl
which is bounded as xl + O, and x, is the distance from the
left edge (see Fig. 1). Similarly, J,tJ near the right edge is

“()(x’)=E+“(X’) (27)

as x, 40, where K,, F,(x,), and X. are analogously defined.
Since the stopping points A are in general very near the tip,

J,(j,t~P and Jz(J,botcan each be approximated as l\2JZ[J, that
is, KlI\2& or K, I/2~. Since xl = x + w\2 and x, =

w/2 – x from the geomet~ of Fig. 1, (25) becomes

R.

[
/

42K; I’ A,, 2K:12
—&, –jA ~kr

a“ – a“ = 2z012 A,[ 4X, 1, 1

‘aK’’ln(%)+K’ln(a’28)
The constants K{ and K,, the singularity terms in the

current models J:{, = KII/& and J:f) = K, I\&, must be

determined. Of course, when JZ(J is integrated over the
entire strip, the result is the current 1, but the K terms are
different for each geometry and configuration. In the follow-
ing, K will be related to the inductance of the zero-thickness
case, so that a modified incremental inductance rule will be
developed without thickness corrections. Eventually, the sep-
arate terms K, and Kr will combine into the derivative of
inductance with respect to width, dL \I?w, so the subscripts
will be dropped for brevity.

C. Relating the Singular Part of the Current to the Expanded

Lorentz Potential

From (6), the quasi-static magnetic field can be expressed
as

H= LV7. XA
P

(29)

where the potential A satisfies

V;A:=O (30)

in the cross-sectional region surrounding the strip as in Fig.
3(a). If A: is expanded in a sine series near the edge
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Fig. 3. (a) First case, with strip of width w and cylindrical geometry
(p,dJ) centered at the left edge. (b) Perturbed case having strip width
w + Sw and a new cylindrical geometry (r, 0) centered at the new left
edge.

x = – w/2 (p = O in Fig. 3(a)), the potential becomes

()
m~

Az(p, ~) = AZ(J+ ~ Az,n(p) sin ~ (31)
m=l

where A=o is the arbitrary constant value of the potential on
the strip (at angles of @= O and 27r). In this two-dimen-
sional, source-free environment around the edge, the scalar
Laplace equation (30) becomes, upon substituting (31),

mz

l~+p+-( ‘)

T
— Azm(p) =0 (32)

‘2

which is solved by

Azm(p) =cmp’”/2 (33)

where Cm is an amplitude constant. The other solution
‘ –n/z is disallowed owing to the Meixner edge condition of

finite field energy in any finite volume. From (33), (31)
becomes

The transverse magnetic field components Ff,fi and H,, are
found from (6), using only A,. In terms of the expanded
potential AZ,

1 OAZ
H@(p, r#)=––

()
‘= ‘~ ~, ~C,.p’n\2-’sin ~p dp m —

(35)

and

ldA, l~m
Hp(p, #)= fi-=–

p ~gl ~cmPm/2-’cos :(

(36)

From the magnetic field, the surface current on both sides
of the infinitely thin strip can be found from the boundary
condition (8). On the top surface, the outward unit normal
vector an =a$= aY, aP= aX, and d =0, so

.lz[J,tOp(P) =ay x (~pax + %5aY)14=0

On the bottom surface, an = – ad= – aY, a,, = a,, and ~ =
2%-, so

.lzo,bot(P)= – ay x (ffpa.x + f=(bay)lo=zr=az%l@=2T

= +,nii,~C~p’”/2-i cos(mm)az. (38)

Thus, the total surface current is

JzO(P) = - j II fC~p’n/2-’(l -cos(m~))
nl

c1 ~–1/2
3C3

___ __p3/2 ++... (39)
F P

Since on the strip surface p = xl, (39) can be compared with
the current expression from (26) to find that

(40)

where the 1 subscripts have been omitted from K and Cl. A
similar derivation using the Lorentz potential expansion
about the right edge yields

KPI=S, (41)
P

The relation (40) will be compared with another derivation
based on inductances in order to eliminate C, and determine
K in terms of an incremental inductance.

D. Relating the Singular Part of the Current with the

Inductance Derivatille

Fig. 3 illustrates two cases of an infinitely thin strip sur-
rounded by a perfectly conducting surface, both invariant in
the z direction. The first case has associated with it the
Lorentz potential A ~, the magnetic field H, the width w,
and a cylindrical geometry (p, ~) with origin at the left strip
edge. The second, perturbed, case has an extra length 8W to
the left of the first edge, so its width is w + 8w. It has a
different cylindrical geometry (r, 13)centered at the new left
edge, as well as quantities A:($ and H,$. In the first, the
Lorentz potential expansion near the edge is (34), and in the
perturbed case, it is

The first term, A ,f)fi, the arbitrary constant potential of the

strip, is set equal to A,,), the potential of the first strip. The
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outer perfect conductors in each case are assigned potentials

of A. = O. Starting with the integral

f
B8 , HdS (43)

s

where S is the enclosed area in Fig. 3(a) excluding the strip,
and using the definition

B8=VTXA8 (44)

along with the vector identity

(V, XC). D= V,. (C XD)+C. (VTXD) (45)

the integral becomes

~B6. HdS=~(VTx Aa). HdS
s

=& T(A8XH)+A,(VTXH)] dS. (46)

The region S has no sources, so VT x H = O can be used to
simplify the integral, Also, the divergence theorem

@%F,)dS=@%and~ (47)
s c

where an is the outward unit normal vector, is applied. In
this case, the transverse vector FT is (A6 X H)= (A ,c~aaz x

~). Thus,

jBa. HdS=@i6xH).andl
s

=; ( A,oaaz x H) “an dl
c.+ c<,

(48)

where Co is the outer conductor on which A= = O and CW is
the closed loop around the strip in Fig. 3(a). From the
identity

A.(Bx C)= C.(AXB) (49)

and defining a, as the unit vector tangential to the strip
contour CW such that an x a, = a,, the integral (48) reduces
to

‘~ H(a~XA,,aaz)dl=~ H(Az,)aal)dl
Cw Cw

——
$

Az{)6H. d1=Azc,81 (50)
c.,

since the contour integral

$
Hdl=I (51)

is defined as the conductor current I. From the definition of
inductance, the strip potential A ,() can be expressed as
AZ(J= U. Similarly, A,[)~ = L813. Since the potential of the
strips in both cases were set equal,

J
Ba. HdS=A2[)81= LaIaI= AZC)I=L12. (52)

s

Now, if the permeability w is linear throughout,

jB8. HdS=jBH6d S (53)
.s s

is true, and from a derivation similar to (43)–(50) before,

~“H~dS=$ Az(p, @) H8. dl. (54)
c W+,$w

Previously, the magnetic field of the first case, H, was
integrated over the first width w. Now, H* is being inte-
grated over the perturbed width w + 8w. The difference will
arise because A Z8 was constant, AZ[J6, over a larger region
w + Sw than what the previous integration was carried over,
specifically w. In the present integral, A, is constant, A=(),
over width w only and has the behavior given by the expan-
sion in (34) beyond that. If A, is approximated by

in the region O< r < Sw, O = O, which is also c$w> p >0,

@ = ~, and h is the constant A,tJ over the remainder of the
strip, then

Here the factor of 2 arises from integration of the top and
bottom of the extra length of strip 8w. Recognizing the
right-hand side contour integral as the current 16 and substi-
tuting from (36) an approximation for HP6,

cl~ –1/2cos
0

HPt(r, /3) = —r
2p ()T

(57)

the expression becomes

( [Cfisin(:)l
~ ,wAz(wb)%dl= AZ,,Z,+2J’W

.+

[

9

()1

–cf~r–l/2cos _._

2p
z dp. (58)

In the region of integration, @= T, O= O, and r = i3w – p, so

C,C,8 ?TSw

()=A,f)Ia– — —
w 2

c,c,#’ri$w
= L118 –

2P “

Equating the integrals (52) and (60) by (53),

Clc,omc$w
LI[6 –

2p
=L8181

and rearranging, the result is

– C, C,*2T6W
/Ifi(L3-L)=

2/l “

(59)

(60)

(61)

(62)

Taking the limiting case 3W ~ O, 1>~ 1, C,,$ ~ Cl, and

(L8 – L)\8w ~ fiL \3w, the constant Cl in terms of the
inductance derivative is then

–2P[2:
C?= (63)

T
. .
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TABLE I
PERCENT DIFFERENCE IN FOUR DIFFERENT METHODS FOR TOTAL CONOWTOR LOSSES

IN MICROSTRIP (INCLUDING GROUND PLANE) FROM THE PUCEI. FORMULAS

(h= O.254mm, t=18.19&m. e, =1, a=4.9x10-7 mho\m, f=l GHz)

Width Loss Calculation Method

(mm) Schneider Kaden Spielman Wiesbeck

0.1
0.2
0.2540
0.2541
0.3
0.4
0.5
0.5080
0.5081
0.6

0.8
1,0

1.2

1.4
1.6

1.8

22.0
10.9

9.1
18.2
10.5

7.7
15.2
16.2
4.0
3.8

3.9

3.3

2.5
1.7

1.2
0.9

– 29.5
– 20.0

– 16.9
– 16,9
– 14.9

–9.1
– 0.5

0.4
– 10.2

– 9.9

-9.1

-8.4

– 7.7

– 7.2
-6.6

– 6.0

– 0.9
– 3.3

–3.0
–3.0
– 2.5

1.6
9.5

10.6
1.0

–1.6

–1.3

–1.2

– 0.5

–0.1
0.1

0.3

14.3
9.0

11.5
11.5
8.9

11.2
18.7
19.6
7.0
6.3

4.2

2.3
1.4

0.4

0.2
0.3

Using (40) in (63), it is found that

–2:
Kz=— (64)

pr

which is the desired expression of K in terms of an incre-
mental inductance. When the right edge is incremented in a
similar derivation, then, using (41), the identical result (64) is
obtained. Therefore,

–2;

K;= K;= K2=— (65)
VT “

Substituting back into (29), the final result for two general
strips is

O!Cz = Clc, —-H-3+4-2)]’66)
This amounts to a kind of incremental inductance rule
analogous to Wheeler’s [12] for the change in a, caused by
edge shape.

III. NUMERICAL RESULTS

A. A Survey of Microstrip Conductor Loss Methods Based on

the Surface Impedance Condition

In formula (66), the attenuation factor aC1 is necessary as
a standard, and must be accurately determined if a, z, the
attenuation for a strip with other edges, is to be meaningful.
Various methods may be used to find aC1, such as numerical
computation, accurate experiment, or analytical approxima-
tions. A comparison of those methods based on the surface
im~edance boundary condition is done here for a reCtmgu-
lar-edged microstrip. Among those are the Lewin\Vainshtein
current integration method of subsection II-A, using the
integmtion stopping point of A ~cC(= t/290.8;approximate
analytical loss formulas of Pucel [3], Schneider [4], and
Kaden [5]; and numerical results given by Spielman [6] and
Wiesbeck [7]. PuceI’s commonly accepted results are based

on Wheeler’s incremental inductance rule [12], which is
derived from the surface impedance condition, and on ap-
proximate closed-form expressions for the inductance of
nonzero-thickness, rectangular-edged microstrips. The for-
mulas in Pucel’s paper include ground plane loss but can be
altered to consider only the strip conductor. The method of
Schneider [4] is similar to Pucel’s in that it also is based on
Wheeler’s rule, and the ground plane loss contribution can
be extracted. However, Schneider’s formulas use different
closed-formed results, in this case approximations for the
microstrip characteristic impedance. Kaden [5] uses the con-
formal transformation technique on thin microstrips and
derives loss formulas for both ground plane and strip from
approximations of the resulting hyperelliptic integrals. A
program for moment method solution of a general microstrip
configuration with ground plane loss is given in Spielman [6]
(errors exist in the program listing in [6], and were corrected
by H. G. Oltman of Tecom Industries in a private communi-
cation), Another numerical method by Wiesbeck [7] imple-
menting the moment method is used to give results with and
without ground plane loss for three specific microstrip sub-
strate heights. The results given by Finlay et al. [81 are
particularly important for the case of rnetallization strips
with thicknesses comparable to skin depth.

All of the other techniques were compared for one of the
specific microstrip configurations used by Wiesbeck. Compu-
tation with these methods was done over a range of strip
widths from 0.1< w <1.8 mm, while all other parameters
were held constant at h = 0.254 mm, t= 18.19, pm, e,. = 1,
0 = 4.9x 10–7 mho/m, and f = 1 GHz. Results of the total

conductor loss including the ground plane are given in Table
1 for the methods of Pucel, Schneider, Kdden, Spielman, and
Wiesbeck. Table II compares strip loss only for Pucel,
Schneider, IQdden, Wiesbeck, and Lewin\Vainshtein. All
entries are given in the form of a percentage difference from
Pucel, p:

~ = ~( ,Otllcr– ~,,l’llcel
x 100. (67)

~( , I’llCcl

Several observations can be made from the results. First,
as the width gets narrower to O.I mm, the thin-strip approxi-
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TABLE 11

PERCENT DIFFERENCE IN FOUR DIFFERENT MET}fom FOR STRIP CONOWTCIR Loss
IN MICROSTRIP FROM THE PUCEL FORMULAS (h = 0.254 mm, f = 18.19 #m,

c, = 1, u=4.9X10--7mho/m, f= 1 GHz)

Width Loss Calculation Method

(mm) Schneider Kaden Lewin Wiesbeck

0.1
0.2

0.2540

0.2541

0.3

0.4
0.5

0.5080
0.5081
0.6
0.8
1.0
1,2

1.4
1.6
1.8

23.7

12.0

10.2

19.3
11.5

8.5

16.1
17.0
4.6

4.5
4.3
3.6
2.8
2.0
1.4

1.0

–41.5
– 32.7
– 29.7
– 29.7
– 27.5
– 22.0
– 13.9
– 13.2
– 22.4
–21.4
– 19.8
– 18.3
– 17.0
– 15.8
– 14.6
– 13.7

29.4
19.3

17.5

17.7

15.6

15.0
20.6

21.6

8.6
3.7

– 2.4
– 4.7
– 6.0
– 7,2

– 8.’2

– 8.6

20.4
19,3

23.6

23.7

22.0

26.4
36.7

37.7
23.1

23.4
21.9
20.1
19.1
17.4
16.6
15.6

mation upon which each of the analytical formulas is founded
starts to fail. This results in larger differences from Pucel, ~ t+
one of those analytical methods, at that width. Second, there
is a sharp discontinuity in Pucel’s loss at w/h = 2, or w =
0.508 mm. This is where the two closed-formed inductance
approximations used by Pucel meet, resulting in a discontinu-
ity of 9.0% for t -0 and slightly worse for the nonzero
thickness here. Judging from the comparisons, it appears
that the w/h <2 approximation is at fault, giving losses
which are too low. A similar discontinuity appears for
Schneider at the junction of two closed-form approximations
of characteristic impedance, w/h = 1 or w = 0.254 mm. The
third analytical result, by Kaden, appears to be consistently
lower than other results, but improves as the strip width
increases. Spielman’s numerical code shows excellent agree-
ment with Pucel, but the issue of discretization error should
be mentioned. In this auulication, the finite substrate and
ground plane width was ‘~ssigned a value of 1 = 10w. When

this ratio was changed, conductor loss was altered signifi-

cantly, especially for very large //w ratios. Thus, discretiza-
tion in numerical methods can drastically alter results.
Wiesbeck also compared reasonably with Puce] in total loss,
particularly for wider strips, but the contribution of strip loss
varied much differently with substrate height h than Pucel.
Finally, the Lewin/Vainshtein current integration method
predicted higher strip loss than Pucel for narrow strips and
lower strip loss for wider strips, For the following numerical
comparisons, the attenuation from the Lewin/Vainshtein

method, a., ~_,,v_b&;., will be used as cr.. keepine in
mind that the ground plane loss contribution becomes more
important with increasing strip width.

B. Results from the Modified !ncrernental Inductance Method

Formula (66) has been applied to microstrip lines of vary-
ing geometries comparing losses from the rectangular and
semicircular edges (see Fig. 4), using the conductor loss aC
of the rectangular-edged strip above. The microstrip induc-
tance for an infinitely thin strip was taken from [3], with the
thickness correction terms set equal to zero. Finally, the
stopping points for the two edges, A,CCt= t/290.8 and ACi,C
= t\124.77, were taken from Lewin [I] and Vainshtein [2].

~1
(b)

Fig. 4. (a) Rectangular-edged strip. (b) Circular-edged strip.

An approximate expression for the inductance of the
crostrip is ([3])

t

mi -

‘=W3+W’+””’I“8)
for w/h<2 and

‘=:(fi+:’n[2Te(: +0’4)1)-’ “9)

for w/h >2. The required derivative dL /Jw is found to be

dL

–[- -1

#() h w

dw=– 2Trh W – 161z

for w/hq2 and

(70)

1

ilL
2T +

P() w/h+ l.88

dw=–

2=h (i+:1n[2Te(++09411)2 ’71)

for w/h>2.

In Fig. 5 the results of the loss comparison over a large
range of strip widths and thicknesses are given, It is seen that
the circular-edged microstrip produces appreciably smaller
loss than the rectangular-edged lines, especially as the strip
gets narrower. As expected, edge shape becomes unimpor-
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Fig. 5. Percent difference in loss between circular and rectangular

edges over a wide range of microstrip widths and thicknesses using the
modified incremental inductance method.

tant for very wide strips, since less of the total current is
concentrated in the edges of the strip. Again, in that ex-
treme, ground plane loss grows significantly and can no
longer be ignored. Another observation is that as the strip
grows thicker, the dependence on edge shape” increases as
well.

C. Results from the Lewin/Vainshtein Method

The effect of circular edges on loss was examined accord-
ing to the modified incremental inductance method in Fig, 5.
To compare the results from this method with the
Lewin/Vainshtein current integration results, the current
integrations were carried out to both the circular and rectan-
gular stopping points, AC,rCand A ,eCt,and compared. Results
for a single normalized thickness, t/h = 0.01, are shown in
Fig. 6, along with the results from (66) in Fig. 5 for the same
thickness. An analysis ‘of the results indicates that the two
contrasting methods have roughly the same edge shape de-
pendence over a wide range of strip widths.

IV. CONCLUSION AND FUTURE DIRECTIONS

The development of the result (66) was done to further
the work of Lewin [1] and Vainshtein [2] with specific em-
phasis on the effect of different strip edge shapes on the
conductor loss of planar transmission lines. A modified in-
cremental inductance method can be used to compare loss
for strips with different edges. Thus, once a result is ob-
tained for a specific edge by other methods, as surveyed
above, loss can be found for any strip edge shape if the
stopping point A and the zero-thickness system inductance
are known. This method holds for any planar line where
quasi-TEM approximations can be used, so that the induc-
tance is still a sensible quantity and the strip transverse
current can be ignored. In an asymmetric system such as
microstrip, the loss integration becomes complicated by the
division of an ideal, zero-thickness current expression into
the currents on the top and bottom of the strip. This method
avoids that problem, although those loss integrations were
developed and done here for comparison.

It has been shown that the effect of edge shape can be
appreciable and should be considered. Future work might

s .1 1 10 100

Microstrip width / Substrate height

Fig. 6. Percent difference in loss between circular and rectangular
edges over a wide range of microstrip widths and [//] = 0.01 using both

(a) the perturbational loss integrals of Lewin and Vainshtein and (b) the
modified incremental inductance method.

include a more extensive list of edge shape stopping points
A, especially for the trapezoidal edge, a common conse-
quence of the fabrication process. An experimental verifica-
tion with feasible edge shapes would be possible, especially
with the trapezoidal and rectangular edges. Finally, the sur-
face impedance bounda~ condition, used here and in many
analyses on conductor loss, should be thoroughly examined
for validity near the edge, where much of the conductor loss
takes place.
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